МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой материаловедения и индустрии наносистем Академик РАН

В.М. Иевлев подпись, расшифровка подписи

16.05.2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.10 Наноматериалы

- 1. Код и наименование направления подготовки/специальности:
- 04.03.02 Химия, физика и механика материалов
- 2. Профиль подготовки: Материаловедение и индустрия наносистем
- 3. Квалификация выпускника: бакалавр
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины: *материаловедения и индустрии наносистем*
- 6. Составители программы: *Сладкопевцев Борис Владимирович,* кандидат химических наук, доцент
- **7. Рекомендована:** научно-методическим советом химического факультета, протокол №10-03 от 27.03.2025

9. Цели и задачи учебной дисциплины

Целями освоения учебной дисциплины являются: формирование у студентов системы представлений об основных видах наноматериалов, их свойствах и областях использования в настоящее время или в перспективе.

Задачи учебной дисциплины:

Студенты должны:

- получить представления о наноматериалах, познакомиться с различными подходами к их классификации (с точки зрения мерности, функциональных свойств, областей применения и т.д.);
- знать основные свойства того или иного наноматериала, прогнозировать возможные свойства с учётом полученных ранее из других курсов знаний о веществах и материалах;
 - знать области применения наноматериалов в настоящее время и в будущем.

10. Место учебной дисциплины в структуре ООП:

Часть, формируемая участниками образовательных отношений, Блока 1. Дисциплины (модули).

Требования к входным знаниям, умениям и навыкам: для освоения курса студент должен быть знаком с основными разделами общей и неорганической химии, знать основные методы синтеза и анализа состава и структуры вещества в наноразмерном состоянии.

Изучение данной дисциплины базируется на следующих курсах, изученных студентами ранее:

- Общая и неорганическая химия
- Физика
- Органическая химия
- Нанотехнологии
- Нанокластеры и наноструктуры: синтез и свойства

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ПК-2	Способен использовать знания о методах синтеза и свойствах материалов различного назначения, в том числе наноматериалов,	ПК-2.1	Выбирает методы синтеза материалов различного назначения (в том числе наноматериалов) в соответствии с поставленной задачей	Знать: основные методы синтеза важнейших наноматериалов Уметь: использовать полученные знания для выбора методов синтеза наноматериалов и характеризации их свойств. Владеть: навыками постановки и решения конкретных задач синтеза наноматериалов
		ПК-2.2	Использует знания о свойствах материалов для решения конкретных профессиональных задач	Знать: основные классы наноматериалов, их свойства и области применения в настоящее время и в перспективе Уметь: использовать полученные знания для решения профессиональных задач, связанных с исследованиями и применением наноматериалов Владеть: терминологией в изучаемой области; навыками поиска и анализа информационных источников в изучаемой области

12. Объем дисциплины в зачетных единицах/час. — 4/144.

Форма промежуточной аттестации – зачет

13. Трудоемкость по видам учебной работы

	Вид учебной работы		Трудоемкость			
Виду			По семестрам			
			8 семестр	семестр		
Контактная рабо	та	100	100			
	лекции	30	30			
	практические	40	40			
в том числе:	лабораторные	30	30			
	курсовая работа	_	_			
Самостоятельная работа		44	44			
Промежуточная аттестация (для экзамена)						
	Итого:		144			

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК *
		1. Лекции	
1.1	Основные понятия дисциплины. Нульмерные наноструктурированные материалы	Наноматериалы, способы их классификации. Классификация по мерности, по функциональным свойствам и областям применения. Нанокристаллы. Синтез монолитных материалов в нанокристаллическом состоянии.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
1.2	Одномерные наноструктурированные материалы	Тубулярные наноструктуры. Классификация, методы синтеза, области применения. Углеродные и неуглеродные наноструктуры на основе дисульфидов вольфрама и молибдена. Топотактический процесс. Одномерные наноструктуры на основе оксидов титана, ванадия, цинка. Функционализация нанотрубок как путь создания материалов с заранее заданными свойствами.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
1.3	Квантовые наноструктуры	Квантовые ямы, проволоки, точки. Способы синтеза квантовых наноструктур.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
1.4	Двумерные наноструктурированные материалы	Тонкие пленки. Наноматериалы для мембран. Нанолитография на монослоях. Электрохимические способы получения нанокристаллических покрытий. Распад слоистых структур на отдельные слои в неводных растворителях в присутствии ПАВ. Многослойные структуры.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
1.5	Объёмные наноструктурированные материалы	Основные виды. Методы наноструктурирования. Влияние наноструктурированного объёмного материала на магнитные свойства. Разупорядоченные твердотельные структуры. Наноструктурированные многослойные материалы.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5

			1
		Нанокерамика. Пористый кремний. Наноструктурированные кристаллы. Природные нанокристаллы. Наночастицы в цеолитах. Кристаллы из металлических наночастиц.	6)414
1.6	Применение функциональных наноматериалов	Наномеханизмы и наноустройства. Микро- и наноэлектромеханические системы. Актюаторы (электростатические, магнитные, тепловые, гидравлические и т.д.). Сенсорные НЭМС. Наноэлектроника и молекулярная электроника Наноматериалы в электронике. Системы записи и магнитные носители информации Сенсоры. Катализ. Преобразование солнечной энергии, топливные ячейки, нано-батареи. Фотонные кристаллы, их размерность. Методы формирования фотонных кристаллов. Материалы на основе фотонных кристаллов, области применения.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
0.4		рактические занятия	0) (1) (1)
2.1	Основные понятия дисциплины. Нульмерные наноструктурированные материалы	Нанокластеры. Углеродные кластеры. Фуллерены. Неуглеродные шарообразные молекулы.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
2.2	Одномерные наноструктурированные материалы	Углеродные нанотрубки. Характеристика, методы синтеза, свойства. Нанонити. Нанонити на основе углерода и металлов. Методы их получения. Физико-химические свойства нанонитей.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
2.3	Квантовые наноструктуры	Применение квантовых наноструктур. Перспектива использования квантовых точек в создании дисплеев (QD-LED) и светоизлучающих систем. Лазеры на квантовых точках. Квантовые точки в биологических исследованиях.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
2.4	Двумерные наноструктурированные материалы	Двумерные наноматериалы на основе углерода. Графен.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
2.5	Объёмные наноструктурированные материалы	Квазикристаллические наноматериалы, перспективные в машиностроении, альтернативной и водородной энергетике. Конструкционные наноструктурные твердые сплавы. Наноструктурные защитные термо- и коррозионностойкие покрытия.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
2.6	Применение функциональных наноматериалов 3. Ла	Материалы для бионанотехнологии Биологические наноструктуры. Конструкционные наноматериалы для медицины. Нанофармакология, наноматериалы как лекарства и как носители лекарств. Диагностика заболеваний и наносистемы – магнитная томография (магнитные наночастицы – зонды), маркеры. Нанокомпозиты. Наночастицы в керамической, металлической или полимерной матрице. Магнитные нанокомпозиты. Каталитические нанокомпозиты. Макромолекулярные и супрамолекулярные структуры. Биологические нанокомпозитные материалы.	ЭУМК https://edu.vsu .ru/course/vie w.php?id=414 5
3.1	Основные понятия	Лабораторная работа «Сборка солнечного	ЭУМК
	дисциплины. Нульмерные наноструктурированные материалы	элемента нового типа с использованием нанотехнологий» Лабораторная работа «Исследование морфологии поверхности гетероструктур МеО/А ^{III} В ^V посредством нанотехнологического комплекса	https://edu.vsu .ru/course/vie w.php?id=414 5

		«Умка»»	
3.2	Объёмные	Лабораторная работа «Получение ферромагнитных	ЭУМК
	наноструктурированные	жидкостей на основе высокодисперсного магнетита	https://edu.vsu
	материалы	Fe₃O₄ и исследование их свойств»	.ru/course/vie
			w.php?id=414
			5
3.3	Объёмные	Лабораторная работа «Синтез нанопористого Al ₂ O ₃	ЭУМК
	наноструктурированные	методом анодного оксидирования алюминиевых	https://edu.vsu
	материалы	фольг»	.ru/course/vie
		Лабораторная работа «Синтез пористого фосфида	w.php?id=414
		индия методом анодного оксидирования»	5

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы	Виды занятий (количество часов)				
п/п	паименование темы (раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
1	Основные понятия дисциплины. Нульмерные наноструктурированные материалы	4	4	20	8	36
2	Одномерные наноструктурированные материалы	6	8	_	6	20
3	Квантовые наноструктуры	4	6	_	4	14
4	Двумерные наноструктурированные материалы	4	8	_	8	20
5	Объёмные наноструктурированные материалы	6	8	10	8	32
6	Применение функциональных наноматериалов	6	6	_	10	22
	Итого:	30	40	30	44	144

14. Методические указания для обучающихся по освоению дисциплины

В процессе изучения дисциплины предполагается: работа с конспектами лекций и литературными источниками; подготовка кратких сообщений.

курса достаточно большое рамках внимание уделено внеаудиторной самостоятельной работе студентов, предполагается работа литературными источниками. Специфика предмета заключается в большом количестве новой информации, которая появляется постоянно, поэтому необходимо самостоятельно работать с электронными библиотеками, научными журналами, специализированными ресурсами и источниками Интернета.

Следует отметить, что данный курс очень тесно взаимосвязан с дисциплиной «Нанотехнологии» (читается в 7 семестре), где были рассмотрены основные методы синтеза веществ и материалов в наноразмерном состоянии, поэтому здесь рассматриваются только в основном особые, частные методы синтеза тех или иных наноматериалов. В то же время в рамках курса «Наноматериалы» необходимо часто актуализировать полученные ранее знания, проводя опросы и беседы со студентами для формирования целостной картины. Кроме того, некоторые разделы данного курса, такие как «Кластеры углерода. Фуллерены», «Углеродные нанотрубки», «Металлические кластеры» и некоторые другие достаточно подробно были рассмотрены в рамках курса «Нанокластеры и наноструктуры: синтез и свойства», поэтому здесь делается в основном упор на их свойства и области применения.

Использование ЭУМК https://edu.vsu.ru/course/view.php?id=4145. ЭУМК «Наноматериалы» на портале ВГУ «Электронный университет» содержит методические

материалы, презентации лекций, учебные пособия и необходимые для изучения дисциплины материалы. При реализации дисциплины также используются сервисы видеоконференций (BigBlueButton, Zoom, Discord и др.), электронная почта, мессенджеры и социальные сети.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников) а) основная литература:

	- -
№ п/п	Источник
1.	Фахльман Б. Химия новых материалов и нанотехнологии / Б. Фахльман ; пер. с англ. Д. О. Чаркина и В. В. Уточниковой ; под ред. Ю. Д. Третьякова и Е. А. Гудилина. – Долгопрудный : Интеллект, 2011. – 463 с.
2.	Гусев А. И. Наноматериалы, наноструктуры, нанотехнологии / А. И. Гусев. – Изд. 2-е., испр. – Москва: Физматлит, 2009. – 414 с. // «Университетская библиотека online»: электронно-библиотечная система. – URL: https://biblioclub.ru/index.php?page=book_red&id=68859

б) дополнительная литература:

дополнит	ельная литература.
№ п/п	Источник
3.	Елисеев А. А. Функциональные наноматериалы: учеб. пособие / А.А. Елисеев, А.В. Лукашин. – Москва : Физматлит, 2010. – 456 с.
4.	Рыжонков Д. И. Наноматериалы : учебное пособие / Д. И. Рыжонков, В. В. Левина, Э. Л. Дзидзигури. – Москва : Бином. Лаборатория знаний, 2008. – 365 с.
5.	Научные основы нанотехнологий и новые приборы : учебник-монография / под ред. Р. Келсалла, А. Хамли, М. Геогегана ; пер. с англ. А.Д. Калашникова Долгопрудный : Интеллект, 2011 527 с.
6.	Чаплыгин Ю. А. Нанотехнологии в электронике / Ю. А. Чаплыгин. – Москва : Техносфера, 2015. – 479 с. // «Университетская библиотека online» : электронно-библиотечная система. – URL : http://biblioclub.ru/index.php?page=book&id=468348>.
7.	Старостин В. В. Материалы и методы нанотехнологии: учеб. пособие / под общ. ред. Патрикеева Л. Н. – Москва : Бином. Лаб. знаний, 2008. – 431 с.
8.	Российские нанотехнологии : журнал
9.	Nano Letters : scientific journal, American Chemical Society

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Pecypc
1.	https://www.lib.vsu.ru/ - сайт Зональной Научной Библиотеки Воронежского
1.	государственного университета
2.	"Университетская библиотека online", http://biblioclub.ru/
3.	http://www.nanometer.ru/ - Нанотехнологическое сообщество «Нанометр»
1	http://www.nanonewsnet.ru/ - новости нанотехнологий, информационно-аналитическое
4.	издание, посвященное вопросам популяризации и развития нанотехнологий в РФ
_	http://www.rusnanonet.ru/ - информационно-аналитический портал российской
5.	национальной нанотехнологической сети

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных), курсовых работ и др.)

№ п/п	Источник
1.	Миттова И. Я. Наноматериалы: свойства порошков и компактных некристаллических материалов: учебное пособие для вузов / И. Я. Миттова, Е. В. Томина, С. С. Лаврушина; Воронеж. гос. ун-т. – Воронеж: ИПЦ ВГУ, 2007. – 69 с.
2.	Практикум синтез и исследование нанодисперсных систем [Электронный ресурс] : учебнометодическое пособие : [для студ. 4 к. днев. отд-ния хим. фак., для направления 020300 - Химия, физика и механика материалов] / Воронеж. гос. ун-т ; [сост.: Е. В. Томина и др.]. – Электрон. текстовые дан. – Воронеж : Издательский дом ВГУ, 2015.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

При реализации дисциплины используются различные типы лекций – вводные лекции, информационные лекции с визуализацией (мультимедийные презентации), по отдельным темам – обзорные. На практических занятиях: выступление с краткими сообщениями, круглые столы. На лабораторных занятиях – выполнение и защита лабораторных работ. Текущая аттестация осуществляется в форме контрольных работ, промежуточная – по КИМ. ЭУМК https://edu.vsu.ru/course/view.php?id=4145

При реализации дисциплины с использованием дистанционных образовательных технологий используются инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru), сервисы видеоконференций (BigBlueButton, Zoom, Discord и др.), электронная почта, мессенджеры и социальные сети.

18. Материально-техническое обеспечение дисциплины:

Мультимедийный проектор BENQ, экран, ноутбук. Microsoft Windows Учебная аудитория 358а, Лаборатория синтеза и технологии наноматериалов. Комплекс нанотехнологического оборудования «УМКА»

- Источник постоянного тока Agilent N8740A
- Цифровой мультиметр Agilent 34401a
- Магнитная мешалка

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Основные понятия дисциплины. Нульмерные наноструктурированные материалы	ПК-2	ПК-2.1 ПК-2.2	Устный опрос
2.	Одномерные наноструктурированные материалы	ПК-2	ПК-2.1 ПК-2.2	Устный опрос Контрольная работа №1
3.	Квантовые наноструктуры	ПК-2	ПК-2.1 ПК-2.2	Устный опрос
4.	Двумерные наноструктурированные материалы	ПК-2	ПК-2.1 ПК-2.2	Устный опрос
5.	Объёмные наноструктурированные материалы	ПК-2	ПК-2.1 ПК-2.2	Устный опрос Контрольная работа №2
6.	Применение функциональных наноматериалов	ПК-2	ПК-2.1 ПК-2.2	Устный опрос
	Промежуточна форма контро	Перечень вопросов		

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Контрольная работа Краткие сообщения Круглый стол Защита лабораторных работ

Предполагается использование балльно-рейтинговой системы (БРС).

Максимальные баллы:

- Контрольная работа 5 баллов;
- Круглый стол 5 баллов;
- Краткие сообщения 3 балла;
- Выполнение и защита четырёх лабораторных работ 5 баллов.

Оценка «зачтено» может быть выставлена автоматом в случае, если студент наберёт 40 баллов и более по итогам работы в семестре.

Перечень заданий для контрольных работ

Контрольная работа №1

Время выполнения — 60 мин. Один КИМ содержит три вопроса из перечня ниже. Необходимо представить развёрнутый ответ на вопрос, нарисовать необходимые схемы и т.д.

- 1. Понятие "дисперсные системы". Классификация дисперсных систем. Агрегаты и агломераты
 - 2. Классификация наноматериалов с точки зрения стандарта ISO
 - 3. Виды одномерных наноструктур (с общей характеристикой линейных размеров)
 - 4. Механизмы формирования одномерных наноструктур
- 5. Тубулярные наноструктуры на основе дисульфидов молибдена и вольфрама. Методы синтеза и свойства
- 6. Тубулярные наноструктуры на основе оксидов ванадия и титана. Методы синтеза, основные свойства
- 7. Материалы на основе УНТ (приведите не менее двух примеров материалов, общую характеристику их свойств и областей применения)
- 8. Устройства на основе УНТ: диоды и дисплеи (приведите схему и опишите общий принцип их работы)
- 9. Устройства на основе УНТ: полевые транзисторы и источники рентгеновского излучения (приведите схему и опишите общий принцип их работы)

Контрольная работа №2

Время выполнения — 50 мин. Один КИМ содержит два вопроса из перечня ниже. Необходимо представить развёрнутый ответ на вопрос, нарисовать необходимые схемы и т.д.

- 1. Методы синтеза графена (приведите не менее трёх примеров)
- 2. Материалы на основе графена (по Вашему выбору, не менее двух примеров. Приведите основные характеристики материалов и области применения)
- 3. Химическое осаждение из растворов как метод синтеза плёнок: основные стадии процесса, преимущества и недостатки метода
- 4. Технология Лэнгмюра-Блоджетт: принцип метода, разновидности и области применения плёнок
- 5. Сравнение возможностей методов МЛЭ и магнетронного распыления (сравнительный анализ в виде таблицы)
- 6. Методы синтеза трёхмерных наноструктурированных материалов (приведите примеры не менее трёх методов, опишите их сущность и возможности)

Описание технологии проведения

Контрольная работа проводится в письменном виде, длительность контрольной работы указана в соответствующем разделе, перечень тем для подготовки студентам известен заранее.

Требования к выполнению заданий (или шкалы и критерии оценивания) Максимальный балл – 5.

Балл «5» ставится при выполнении всех заданий КИМ, представлении развёрнутого и правильного ответа, сопровождаемого необходимыми иллюстрациями и схемами, ответами на каждый раздел вопроса.

Балл «4» ставится при выполнении от 60% работы и выше, имеются отдельные неточности, не грубые ошибки.

Балл «3» ставится при выполнении от 40 до 59% работы, имеются неточности, ответы неполные, отсутствуют некоторые части ответа.

Балл «2» ставится при отсутствии ответа/неполном ответе и не учитывается в балльнорейтинговой системе.

Перечень тем для обсуждения – круглый стол

Круглый стол №1. «Микро- и наноэлектромеханические системы. Наномеханизмы и наноустройства»

- 1. Законы пропорциональной миниатюризации. Числа Коши, Фруда, Фурье, Рейнольдса, Вебера
 - 2. Микро- и нанотрибология
 - 3. Проблемы наномеханики и износ механизмов
 - 4. Электростатические и магнитные актюаторы
 - 5. Пьезоэлектрические, тепловые и гидравлические актюаторы
 - 6. Сенсорные НЭМС
 - 7. Технологии производства НЭМС и МЭМС
 - 8. Молекулярные актюаторы
 - 9. Основные тенденции и перспективы развития НЭМС

Круглый стол №2. Круглый стол «Углеродные наноматериалы»

- 1. Общая характеристика углеродных материалов. Классификация и разновидности
- 2. Фуллерены. Структура и основные методы синтеза. Нанолуковицы
- 3. Фуллерит. Фуллериды. Фуллеренсодержащие материалы
- 4. Углеродные нанотрубки. Структура и физические свойства. Углеродные нановолокна
- 5. Методы синтеза углеродных нанотрубок
- 6. Материалы на основе УНТ (нанобумага, аэрогели, плёнки и покрытия, «лес» УНТ (в том числе Vantablack) и др.)
 - 7. Устройства на основе УНТ. Принципы работы
 - 8. Графен: структура, дефекты и физические свойства
 - 9. Методы синтеза и характеризации графена и его аналогов. Химия графена
 - 10. Материалы на основе графена и его аналогов
 - 11. Устройства на основе графена
 - 12. Наноалмазы и наноплёнки
 - 13. Терморасширенный графит. Пиролитический графит. Пенографит
 - 14. Нанокомпозиты на основе углерода

Круглый стол №3. Круглый стол «Наноматериалы в электронике»

Круглый стол на основе материала книги: Чаплыгин Ю. А. Нанотехнологии в электронике / Ю. А. Чаплыгин. – Москва : Техносфера, 2015. – 479 с.

Описание технологии проведения

Круглые столы готовятся в формате выступлений по отдельным вопросам (с использованием презентаций и иллюстративного материала) и обсуждения при участии всех присутствующих.

Защита лабораторных работ

Оформление и представление результатов выполненных лабораторных работ осуществляется в соответствии с требованиями, приведённых в учебно-методическом пособии по практикуму. Защита лабораторной работы проводится в процессе беседы со студентом. В начале проверяется правильность оформления работы, формулирования выводов. Затем происходит опрос, включающий вопросы о ходе выполнения работы, полученных результатах, а также контрольные вопросы к каждой работе.

20.2 Промежуточная аттестация

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по образовательным программам высшего образования Воронежского государственного университета.

Промежуточная аттестация студентов является основной формой контроля аудиторной работы студентов и проводится с целью установления уровня и качества подготовки студентов и определяет:

- полноту и прочность теоретических знаний;
- сформированность умений применять теоретические знания при решении практических и профессиональных задач;
 - сформированность общих и профессиональных компетенций.

Подготовка к промежуточной аттестации является формой самостоятельной работы студентов. При этом обучающийся должен использовать рекомендованный рабочей программой перечень основной и дополнительной литературы, материалы лекций, информационные и электронно-образовательные ресурсы.

Промежуточная аттестация проводится в устной форме. Преподаватель, ответственный за её проведение, вправе задавать студентам дополнительные вопросы по любым разделам учебной дисциплины; все вопросы и ответы фиксируются в листе ответов студента. Время зачета с оценкой и экзамена регламентируется действующими нормативными документами. Результат промежуточной аттестации заносится преподавателем в лист ответов обучающегося (после чего студент расписывается, подтверждая своё согласие с выставленной оценкой), а также в зачетно-экзаменационную ведомость.

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Собеседование по билетам к зачету

Перечень вопросов к зачету и порядок формирования КИМ

- 1. Нульмерные наноструктуры. Способы получения и применение.
- 2. Одномерные наноструктуры. Материалы на их основе, способы получения.
- 3. Тубулярные наноструктуры. Углеродные и неуглеродные нанотрубки.
- 4. Двумерные наноструктуры. Основные методы синтеза.
- 5. Графен: свойства, способы получения и перспективы применения.
- 6. Наноматериалы для фотоники.
- 7. Наноструктурированные многослойные материалы.
- 8. Наноструктурные защитные термо- и коррозионностойкие покрытия.
- 9. Электрохимические способы получения нанокристаллических покрытий и объёмных материалов.
- 10. Квантовые наноструктуры (точки, проволоки, ямы). Способы получения.
- 11. Применение квантовых наноструктур.
- 12. Пористые наноматериалы: методы синтеза и области применения.
- 13. Материалы для производства мембран.
- 14. Разупорядоченные твердотельные структуры.
- 15. Материалы для записи и хранения информации.
- 16. Фотонные кристаллы: способы получения, свойства и применение.
- 17. Нанокомпозиты.
- 18. Нанокерамика.
- 19. Материалы для МЭМС и НЭМС.

- 20. Микро- и нанотрибология. Преобразование энергии.
- 21. Наноэлектроника. Современные транзисторы.
- 22. Наносистемы для диагностики заболеваний.
- 23. Конструкционные наноматериалы для медицины.
- 24. Биологические наноструктуры. Биомиметика.
- 25. Нанофармакология, наноматериалы как лекарства и как носители лекарств.
- 26. Преобразование солнечной энергии, топливные ячейки.
- 27. Наноматериалы с сенсорными и каталитическими свойствами.

Каждый КИМ содержит 2 вопроса из разных разделов программы.

Описание технологии проведения

На подготовку письменного ответа на вопросы КИМ (на листах ответов) даётся 60 минут, после этого проводится устная беседа.

Требования к выполнению заданий, шкалы и критерии оценивания

Для оценивания результатов обучения на зачете используются следующие показатели: владение теоретическими основами дисциплины, способность иллюстрировать ответ примерами, фактами, данными научных исследований.

Для оценивания результатов обучения на зачете используется – зачтено, не зачтено Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Критерии оценивания компетенций	Шкала оценок
Обучающийся владеет понятийным аппаратом теоретическими основами	Зачтено
дисциплины, способен иллюстрировать ответ примерами, фактами.	
Обучающийся демонстрирует отрывочные, фрагментарные знания,	Не зачтено
допускает грубые ошибки	